Contents

Preface / xxvii
Conference Organization / xxviii
Program Committee / xxix
Conference Sponsorship / xxxviii
Awards and Distinguished Papers / xxxix
Keynote and Invited Speakers / xl
IJCAI Organization / xlii
Past IJCAI Conferences / xliii

Invited Talks

Open Information Extraction: The Second Generation / 3
Oren Etzioni, Anthony Fader, Janara Christensen, Stephen Soderland, Mausam

Artificial Intelligence and Human Thinking / 11
Robert Kowalski

Technical Papers and Posters

Agent-Based and Multiagent Systems

Aggregating Dependency Graphs into Voting Agendas in Multi-Issue Elections / 18
Stéphane Airiau, Ulle Endriss, Umberto Grandi, Daniele Porello, Joel Uckelman

Using Emotions to Enhance Decision-Making / 24
Dimitrios Antos, Avi Pfeffer

Hustling in Repeated Zero-Sum Games with Imperfect Execution / 31
Christopher Archibald, Yoav Shoham

Dynamics of Profit-Sharing Games / 37
John Augustine, Ning Chen, Edith Elkind, Angelo Fanelli, Nikolay Gravin, Dmitry Shiryaev

Optimal Partitions in Additively Separable Hedonic Games / 43
Haris Aziz, Felix Brandt, Hans Georg Seedig

Coalitional Voting Manipulation: A Game-Theoretic Perspective / 49
Yoram Bachrach, Edith Elkind, Piotr Faliszewski

Unweighted Coalitional Manipulation under the Borda Rule Is NP-Hard / 55
Nadja Betzler, Rolf Niedermeier, Gerhard J. Woeginger

Simulating the Emergence of Grammatical Agreement in Multi-Agent Language Games / 61
Katrien Beuls, Sebastian Höfer

Approximately Strategy-Proof Voting / 67
Eleanor Birrell, Rafael Pass
A General Elicitation-Free Protocol for Allocating Indivisible Goods / 73
Sylvain Bouveret, Jérôme Lang

Group-Strategyproof Irresolute Social Choice Functions / 79
Felix Brandt

On the Fixed-Parameter Tractability of Composition-Consistent Tournament Solutions / 85
Felix Brandt, Markus Brill, Hans Georg Seedig

Social Distance Games / 91
Simina Brânzei, Kate Larson

Modeling the Emergence and Convergence of Norms / 97
Logan Brooks, Wayne Ibo, Sandip Sen

Verifying Normative Behaviour via Normative Mechanism Design / 103
Nils Balling, Mehdi Dastani

Alternating Epistemic Mu-Calculus / 109
Nils Balling, Wojciech Jamroga

Trust Decision-Making in Multi-Agent Systems / 115
Chris Burnett, Timothy J. Norman, Katia Sycara

Manipulation in Group Argument Evaluation / 121
Martin Caminada, Gabriella Pigozzi, Mikolaj Podlaszewski

Towards More Expressive Cake Cutting / 127
Ioannis Caragiannis, John K. Lai, Ariel D. Procaccia

Efficient Mechanisms with Risky Participation / 133
Ruggiero Cavallo

Using Incentive Mechanisms for an Adaptive Regulation of Open Multi-Agent Systems / 139
Roberto Centeno, Holger Billhardt

AstonCAT-Plus: An Efficient Specialist for the TAC Market Design Tournament / 146
Meng Chang, Minghua He, Xudong Luo

A Market Clearing Solution for Social Lending / 152
Ning Chen, Arpita Ghosh

Hypercubewise Preference Aggregation in Multi-Issue Domains / 158
Vincent Conitzer, Jérôme Lang, Lierong Xia

Changing One's Mind: Erase or Rewind? / 164
Célia da Costa Pereira, Andrea G. B. Tettamanzi, Serena Villata

Multi-Agent Soft Constraint Aggregation via Sequential Voting / 172
Giorgio Dalla Pozza, Maria Silvia Pini, Francesca Rossi, K. Brent Venable

Human-Agent Auction Interactions: Adaptive-Aggressive Agents Dominate / 178
Marco De Luca, Dave Cliff

Choosing Collectively Optimal Sets of Alternatives Based on the Condorcet Criterion / 186
Edith Elkind, Jérôme Lang, Abdallah Saffidine

Action Selection via Learning Behavior Patterns in Multi-Robot Systems / 192
Can Erdogan, Manuela Veloso

Assumption-Based Argumentation Dialogues / 198
Xiuyi Fan, Francesca Toni

Binary Aggregation with Integrity Constraints / 204
Umberto Grandi, Ulle Endriss

Manipulating Boolean Games through Communication / 210
John Grant, Sarit Kraus, Michael Wooldridge, Inon Zuckerman

On the Complexity of the Core over Coalition Structures / 216
Gianluigi Greco, Enrico Malizia, Luigi Palopoli, Francesco Scarcello
Max-Prob: An Unbiased Rational Decision Making Procedure for Multiple-Adversary Environments / 222
Anat Hashavit, Shaul Markovitch

A Dynamic Logic of Normative Systems / 228
Andreas Herzig, Emiliano Lorini, Frédéric Moisan, Nicolas Troquard

Considerate Equilibrium / 234
Martin Hoefer, Michal Penn, Maria Polukarov, Alexander Skopalik, Berthold Vöcking

Model Checking Knowledge in Pursuit Evasion Games / 240
Xiaowei Huang, Patrick Maupin, Ron van der Meyden

The Complexity of Safe Manipulation under Scoring Rules / 246
Egor Ianovski, Lan Yu, Edith Elkind, Mark C. Wilson

Comparing Variants of Strategic Ability / 252
Wojciech Jamroga, Nils Bulling

Accelerating Best Response Calculation in Large Extensive Games / 258
Michael Johanson, Kevin Waugh, Michael Bowling, Martin Zinkevich

A Mechanism for Dynamic Ride Sharing Based on Parallel Auctions / 266
Alexander Kleiner, Bernhard Nebel, Vittorio Amos Ziparo

Security Games with Multiple Attacker Resources / 273
Dmytro Korzhyk, Vincent Conitzer, Ronald Parr

Budgeted Social Choice: From Consensus to Personalized Decision Making / 280
Tyler Lu, Craig Boutilier

Robust Approximation and Incremental Elicitation in Voting Protocols / 287
Tyler Lu, Craig Boutilier

Push and Swap: Fast Cooperative Path-Finding with Completeness Guarantees / 294
Ryan Luna, Kostas E. Bekris

Subsidies, Stability, and Restricted Cooperation in Coalitional Games / 301
Reshef Meir, Jeffrey S. Rosenschein, Enrico Malizia

Using Experience to Generate New Regulations / 307
Javier Morales, Maite López-Sánchez, Marc Esteve

Agents, Actions and Goals in Dynamic Environments / 313
Peter Novák, Wojciech Jamroga

On the Complexity of Voting Manipulation under Randomized Tie-Breaking / 319
Svetlana Obraztsova, Edith Elkind

Efficient Planning for Factored Infinite-Horizon DEC-POMDPs / 325
Joni Pajarinen, Jaakko Peltonen

An Interaction-Oriented Model for Multi-Scale Simulation / 332
Sébastien Picault, Philippe Mathieu

Minimum Search to Establish Worst-Case Guarantees in Coalition Structure Generation / 338
Talal Rahwan, Tomasz Michalak, Nicholas R. Jennings

On Combining Decisions from Multiple Expert Imitators for Performance / 344
Jonathan Rubin, Ian Watson

An Empirical Study of Seeding Manipulations and Their Prevention / 350
Tyrel Russell, Peter van Beek

Rigging Tournament Brackets for Weaker Players / 357
Iabelle Stanton, Virginia Vassilevska Williams
Learning Where You Are Going and from Whence You Came: 
h- and g-Cost Learning in Real-Time Heuristic Search / 365
Nathan R. Sturtevant, Vadim Bulitko

Emergence and Stability of Social Conventions in Conflict Situations / 371
Toshiharu Sugawara

Approximating Optimal Combinatorial Auctions for Complements Using Restricted Welfare Maximization / 379
Pingzhong Tang, Tuomas Sandholm

Generalizing Envy-Freeness toward Group of Agents / 386
Taiki Todo, Runcong Li, Xuemei Hu, Takayuki Mouri, Atsushi Iwasaki, Makoto Yokoo

Concise Characteristic Function Representations in Coalitional Games Based on Agent Types / 393
Suguru Ueda, Makoto Kitaki, Atsushi Iwasaki, Makoto Yokoo

Facing Openness with Socio-Cognitive Trust and Categories / 400
Matteo Venanzi, Michele Pianti, Rino Falcone, Cristiano Castelfranchi

Attack Semantics for Abstract Argumentation / 406
Serena Villata, Guido Boella, Leendert van der Torre

Dynamic Sanctioning for Robust and Cost-Efficient Norm Compliance / 414
Daniel Villatoro, Giulia Andrighetto, Jordi Sabater-Mir, Rosaria Conte

Social Instruments for Robust Convention Emergence / 420
Daniel Villatoro, Jordi Sabater-Mir, Sandip Sen

Reasoning about Preferences in Intelligent Agent Systems / 426
Simeon Visser, John Thangarajah, James Harland

Using Gaussian Processes to Optimise Concession in
Complex Negotiations against Unknown Opponents / 432
Colin R. Williams, Valentin Robu, Enrico H. Gerding, Nicholas R. Jennings

Online Planning for Ad Hoc Autonomous Agent Teams / 439
Feng Wu, Shlomo Zilberstein, Xiaoping Chen

A Maximum Likelihood Approach towards Aggregating Partial Orders / 446
Lirong Xia, Vincent Conitzer

An Efficient Monte-Carlo Algorithm for Pricing Combinatorial
Prediction Markets for Tournaments / 452
Lirong Xia, David M. Pennock

Improving Resource Allocation Strategy against Human Adversaries in Security Games / 458
Rong Yang, Christopher Kiekintveld, Fernando Ordonez, Milind Tambe, Richard John

Continuous Time Planning for Multiagent Teams with Temporal Constraints / 465
Zhengyu Yin, Milind Tambe

Mechanism Design for Double Auctions with Temporal Constraints / 472
Dengji Zhao, Dongno Zhang, Laurent Perrussel

Generalized Reaction Functions for Solving Complex-Task Allocation Problems / 478
Xiaoming Zheng, Sven Koenig

Multi-Agent Plan Recognition with Partial Team Traces and Plan Libraries / 484
Hank Hankaui Zhou, Lei Li

The Shapley Value as a Function of the Quota in Weighted Voting Games / 490
Yair Zick, Alexander Skopalik, Edith Elkind

Constraints, Satisfiability, and Search

Tackling the Partner Units Configuration Problem / 497
Markus Aschinger, Conrad Drescher, Georg Gottlob, Peter Jeavons, Evgenij Thorstensen
A Logic for Causal Inference in Time Series with Discrete and Continuous Variables / 943
Samantha Kleinberg

Belief Base Rationalization for Propositional Merging / 951
Sébastien Konieczny, Pierre Marquis, Nicolas Schwind

On the Decidability of Connectedness Constraints in 2D and 3D Euclidean Spaces / 957
Roman Kontchakov, Václav Novotný, Ian Pratt-Hartmann, Michael Zakharyaschev

Extending Decidable Existential Rules by Joining Acyclicity and Guardedness / 963
Markus Krötzsch, Sebastian Rudolph

Context-Sensitive Diagnosis of Discrete-Event Systems / 969
Gianfranco Lamperti, Marina Zanella

On the Progression of Knowledge in the Situation Calculus / 976
Yongmei Liu, Ximing Wen

Description Logic TBoxes: Model-Theoretic Characterizations and Rewritability / 983
Carsten Lutz, Robert Piro, Frank Wolter

Foundations of Uniform Interpolation and Forgetting in Expressive Description Logics / 989
Carsten Lutz, Frank Wolter

Existential Closures for Knowledge Compilation / 996
Pierre Marquis

Lost in Translation: Language Independence in Propositional Logic — Application to Belief Revision and Belief Merging / 1002
Pierre Marquis, Nicolas Schwind

Reasoning about Fuzzy Belief and Common Belief: With Emphasis on Incomparable Beliefs / 1008
Yoshihiro Maruyama

Causal Learnability / 1014
Loizos Michael

Revisiting Preferences and Argumentation / 1021
Sanjay Modgil, Henry Prakken

Reasoning-Supported Interactive Revision of Knowledge Bases / 1027
Nadeschda Nikitina, Sebastian Rudolph, Birte Glimm

Augmenting Tractable Fragments of Abstract Argumentation / 1033
Sebastian Ordyniak, Stefan Szeider

Query Answering in the Horn Fragments of the Description Logics $\text{SHOIQ}$ and $\text{SROIQ}$ / 1039
Magdalena Ortiz, Sebastian Rudolph, Mantas Simkus

An Approach to Minimal Belief via Objective Belief / 1045
David Pearce, Levan Uridia

An Assertion Retrieval Algebra for Object Queries over Knowledge Bases / 1051
Jeffrey Pound, David Toman, Grant Weddell, Jiewen Wu

On the Complexity of Dealing with Inconsistency in Description Logic Ontologies / 1057
Riccardo Rosati

Dishonest Reasoning by Abduction / 1063
Chiaki Sakama

A Logical Formulation for Negotiation among Dishonest Agents / 1069
Chiaki Sakama, Tran Cao Son, Enrico Pontelli

Description Logics and Fuzzy Probability / 1075
Lutz Schröder, Dirk Pattinson

Well-Supported Semantics for Description Logic Programs / 1081
Yi-Dong Shen
Computing Minimum-Cardinality Diagnoses by Model Relaxation / 1087
Sajjad Siddiqi

Consequence-Based Reasoning beyond Horn Ontologies / 1093
Frantisek Simancik, Yevgeny Kazakov, Ian Horrocks

Beth Definability in Expressive Description Logics / 1099
Baldar ten Cate, Enrico Franconi, Inanc Seylan

The General Game Playing Description Language Is Universal / 1107
Michael Thielscher

Relating Carneades with Abstract Argumentation / 1113
Bas van Gijzel, Henry Prakken

On Qualitative Route Descriptions: Representation and Computational Complexity / 1120
Matthias Westphal, Stefan Wölfl, Bernhard Nebel, Jochen Renz

Translating First-Order Theories into Logic Programs / 1126
Heng Zhang, Yan Zhang, Mingsheng Ying, Yi Zhou

Transitively Relational Partial Meet Horn Contraction / 1132
Zhiqiang Zhuang, Maurice Pagnucco

Machine Learning

Discerning Linkage-Based Algorithms among Hierarchical Clustering Methods / 1140
Margareta Ackerman, Shai Ben-David

A Competitive Strategy for Function Approximation in Q-Learning / 1146
Alejandro Agostini, Enric Celaya

Multi-Evidence Lifted Message Passing, with Application to PageRank and the Kalman Filter / 1152
Babak Ahmedani, Kristian Kersting, Scott Sanner

An Efficient Framework for Constructing Generalized Locally-Induced Text Metrics / 1159
Saeed Amizadeh, Shuguang Wang, Milos Hauskrecht

Semi-Supervised Learning from a Translation Model between Data Distributions / 1165
Henry Anaya-Sánchez, José Martínez-Sotoca, Adolfo Martínez-Usó

A Framework for Incorporating General Domain Knowledge into Latent Dirichlet Allocation Using First-Order Logic / 1171
David Andrzejewski, Xiaojin Zhu, Mark Craven, Benjamin Recht

Improving Performance of Topic Models by Variable Grouping / 1178
Evgeniy Bart

Learning a Distance Metric by Empirical Loss Minimization / 1186
Wei Bian, Dacheng Tao

A Hidden Markov Model Variant for Sequence Classification / 1192
Sam Blasiak, Huzefa Rangwala

Approximation-Guided Evolutionary Multi-Objective Optimization / 1198
Karl Bringmann, Tobias Friedrich, Frank Neumann, Markus Wagner

Distance Metric Learning under Covariate Shift / 1204
Bin Cao, Xiaochuan Ni, Jian-Tao Sun, Gang Wang, Qiang Yang

Using Cases as Heuristics in Reinforcement Learning: A Transfer Learning Application / 1211
Luiz A. Celiberto Jr., Jackson P. Matsuara, Ramon Lopez de Mantaras, Reinaldo A. C. Bianchi

Increasing the Scalability of the Fitting of Generalised Block Models for Social Networks / 1218
Jeffrey Chan, Samantha Lam, Conor Hayes

Concept Labeling: Building Text Classifiers with Minimal Supervision / 1225
Vijil Chenthamarakshan, Prem Melville, Vikas Sindhwani, Richard D. Lawrence
Unsupervised Learning of Patterns in Data Streams Using Compression and Edit Distance / 1231
Sook-Ling Chua, Stephen Marsland, Hans W. Guesgen

Flexible, High Performance Convolutional Neural Networks for Image Classification / 1237
Dan C. Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, Jürgen Schmidhuber

Automatic State Abstraction from Demonstration / 1243
Luis C. Cobo, Peng Zang, Charles L. Isbell Jr, Andrea L. Thomaz

Generative Structure Learning for Markov Logic Networks Based on Graph of Predicates / 1249
Quang-Thang Dinh, Matthieu Exbrayat, Christel Vrain

Learning Decision Rules from Data Streams / 1255
João Gama, Petr Kosina

 Constituent Grammatical Evolution / 1261
Loukas Georgiou, William J. Teahan

Continuous Correlated Beta Processes / 1269
Robby Goetschalckx, Pascal Poupart, Jesse Hoey

A Fast Dual Projected Newton Method for $l_1$-Regularized Least Squares / 1275
Pinghua Gong, Changshui Zhang

Kernel-Based Selective Ensemble Learning for Streams of Trees / 1281
Valerio Grossi, Alessandro Sperduti

On Trivial Solution and Scale Transfer Problems in Graph Regularized NMF / 1288
Quanquan Gu, Chris Ding, Jiawei Han

Joint Feature Selection and Subspace Learning / 1294
Quanquan Gu, Zhenhui Li, Jiawei Han

Multi-Label Classification Using Conditional Dependency Networks / 1300
Yuhong Guo, Suicheng Gu

Extracting Temporal Patterns from Interval-Based Sequences / 1306
Thomas Guyet, René Quiniou

Fast Approximate Nearest-Neighbor Search with $k$-Nearest Neighbor Graph / 1312
Kianna Hajebi, Yasin Abbasi-Yadkori, Hossein Shahrabi, Hong Zhang

Gaussianity Measures for Detecting the Direction of Causal Time Series / 1318
José Miguel Hernández-Lobato, Pablo Morales-Mombiela, Alberto Suárez

Feature Selection via Joint Embedding Learning and Sparse Regression / 1324
Chenping Hou, Feiping Nie, Dongyun Yi, Yi Wu

Heuristic Rule-Based Regression via Dynamic Reduction to Classification / 1330
Frederik Janssen, Johannes Fürnkranz

Adaptation of a Mixture of Multivariate Bernoulli Distributions / 1336
Ankur Kamthe, Miguel Á Carreira-Perpiñán, Alberto E. Cerpa

Revisiting Numerical Pattern Mining with Formal Concept Analysis / 1342
Mehdi Kaytoue, Sergei O. Kuznetsov, Amedeo Napoli

Activity Recognition with Finite State Machines / 1348
Wesley Kerr, Anh Tran, Paul Cohen

Incremental Slow Feature Analysis / 1354
Varun Raj Kompella, Matthew Luciw, Jürgen Schmidhuber

Learning Hash Functions for Cross-View Similarity Search / 1360
Shashir Kumar, Raghavendra Ulupu

Modular Community Detection in Networks / 1366
Wenye Li, Dale Schuurmans

Probit Classifiers with a Generalized Gaussian Scale Mixture Prior / 1372
Guoqing Liu, Jianxin Wu, Suiping Zhou
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locality-Constrained Concept Factorization</td>
<td>1378</td>
</tr>
<tr>
<td>Haifeng Liu, Zheng Yang, Zhaohui Wu</td>
<td></td>
</tr>
<tr>
<td>Cluster Indicator Decomposition for Efficient Matrix Factorization</td>
<td>1384</td>
</tr>
<tr>
<td>Dijun Luo, Chris Ding, Heng Huang</td>
<td></td>
</tr>
<tr>
<td>Ball Ranking Machine for Content-Based Multimedia Retrieval</td>
<td>1390</td>
</tr>
<tr>
<td>Dijun Luo, Heng Huang</td>
<td></td>
</tr>
<tr>
<td>Combining Supervised and Unsupervised Models via</td>
<td></td>
</tr>
<tr>
<td>Unconstrained Probabilistic Embedding</td>
<td>1396</td>
</tr>
<tr>
<td>Xudong Ma, Ping Luo, Fuzhen Zhuang, Qing He, Zhongshi Shi, Zhiyong Shen</td>
<td></td>
</tr>
<tr>
<td>Agent-Oriented Incremental Team and Activity Recognition</td>
<td>1402</td>
</tr>
<tr>
<td>Daniele Masato, Timothy J. Norman, Wamberto W. Vasconcelos, Katia Sycara</td>
<td></td>
</tr>
<tr>
<td>Multi-Kernel Gaussian Processes</td>
<td>1408</td>
</tr>
<tr>
<td>Arman Melkumyan, Fabio Ramos</td>
<td></td>
</tr>
<tr>
<td>Imitation Learning in Relational Domains: A Functional-Gradient Boosting Approach</td>
<td>1414</td>
</tr>
<tr>
<td>Sriraam Natarajan, Saket Joshi, Prasad Tadepalli, Kristian Kersting, Jude Shavlik</td>
<td></td>
</tr>
<tr>
<td>Positive Unlabeled Learning for Time Series Classification</td>
<td>1421</td>
</tr>
<tr>
<td>Minh Nhat Nguyen, Xiaoli-Li Li, See-Kiong Ng</td>
<td></td>
</tr>
<tr>
<td>Distribution-Aware Online Classifiers</td>
<td>1427</td>
</tr>
<tr>
<td>Tam T. Nguyen, Kuiyu Chang, Siu Cheung Hui</td>
<td></td>
</tr>
<tr>
<td>Robust Principal Component Analysis with Non-Greedy $l_1$-Norm Maximization</td>
<td>1433</td>
</tr>
<tr>
<td>Feiping Nie, Heng Huang, Chris Ding, Dijun Luo, Hua Wang</td>
<td></td>
</tr>
<tr>
<td>Biclustering-Driven Ensemble of Bayesian Belief Network Classifiers for Underdetermined Problems</td>
<td>1439</td>
</tr>
<tr>
<td>Tatdow Pansombut, William Hendrix, Zekai Jacob Gao, Brent E. Harrison, Nagiza F. Samatova</td>
<td></td>
</tr>
<tr>
<td>Strategy Learning for Autonomous Agents in Smart Grid Markets</td>
<td>1446</td>
</tr>
<tr>
<td>Prashant P. Reddy, Manuela M. Veloso</td>
<td></td>
</tr>
<tr>
<td>Q-Error as a Selection Mechanism in Modular Reinforcement-Learning Systems</td>
<td>1452</td>
</tr>
<tr>
<td>Mark Ring, Tom Schaul</td>
<td></td>
</tr>
<tr>
<td>Domain Adaptation with Ensemble of Feature Groups</td>
<td>1458</td>
</tr>
<tr>
<td>Rajhans Samdani, Wen-tau Yih</td>
<td></td>
</tr>
<tr>
<td>Discovering Deformable Motifs in Continuous Time Series Data</td>
<td>1465</td>
</tr>
<tr>
<td>Suchi Saria, Andrew Duchi, Daphne Koller</td>
<td></td>
</tr>
<tr>
<td>A General MCMC Method for Bayesian Inference in Logic-Based Probabilistic Modeling</td>
<td>1472</td>
</tr>
<tr>
<td>Taisuke Sato</td>
<td></td>
</tr>
<tr>
<td>Classification of Emerging Extreme Event Tracks in Multivariate Spatio-Temporal Physical Systems Using Dynamic Network Structures: Application to Hurricane Track Prediction</td>
<td>1478</td>
</tr>
<tr>
<td>Huseyin Sencan, Zhengsheng Chen, William Hendrix, Tatdow Pansombut, Frederick Semazzi, Alok Choudhary, VIPin Kumar, Anatoli V. Melchko, NAGiza F. Samatova</td>
<td></td>
</tr>
<tr>
<td>Active Surveying: A Probabilistic Approach for Identifying Key Opinion Leaders</td>
<td>1485</td>
</tr>
<tr>
<td>Hossam Sharara, Lise Getoor, Myra Norton</td>
<td></td>
</tr>
<tr>
<td>Consistency Measures for Feature Selection: A Formal Definition, Relative Sensitivity Comparison, and a Fast Algorithm</td>
<td>1491</td>
</tr>
<tr>
<td>Kilho Shin, Danny Fernandes, Seiya Miyazaki</td>
<td></td>
</tr>
<tr>
<td>Active Online Classification via Information Maximization</td>
<td>1498</td>
</tr>
<tr>
<td>Noam Slonim, Elad Yom-Tov, Koby Crammer</td>
<td></td>
</tr>
<tr>
<td>Angular Decomposition</td>
<td>1505</td>
</tr>
<tr>
<td>Dengdi Sun, Chris Ding, Bin Luo, Jin Tang</td>
<td></td>
</tr>
<tr>
<td>Fast Anomaly Detection for Streaming Data</td>
<td>1511</td>
</tr>
<tr>
<td>Swee Chuan Tan, Kai Ming Ting, Tony Fei Liu</td>
<td></td>
</tr>
</tbody>
</table>
Utility-Based Fraud Detection / 1517
Luis Torgo, Elsa Lopes

On the Utility of Curricula in Unsupervised Learning of Probabilistic Grammars / 1523
Kewei Tu, Vasant Honavar

Learning Driving Behavior by Timed Syntactic Pattern Recognition / 1529
Sicco Verwer, Mathijs de Weerdt, Cees Witteveen

Bi-Weighting Domain Adaptation for Cross-Language Text Classification / 1535
Chang Wan, Rong Pan, Jiefei Li

Heterogeneous Domain Adaptation Using Manifold Alignment / 1541
Chang Wang, Sridhar Mahadevan

Jointly Learning Data-Dependent Label and Locality-Preserving Projections / 1547
Chang Wang, Sridhar Mahadevan

Fast Nonnegative Matrix Tri-Factorization for Large-Scale Data Co-Clustering / 1553
Hua Wang, Feiping Nie, Heng Huang, Fillia Makedon

Local and Structured Consistency for Multi-Manifold Clustering / 1559
Yong Wang, Yuan Jiang, Yi Wu, Zhi-Hua Zhou

Bayesian Policy Search with Policy Priors / 1565
David Wingate, Noah D. Goodman, Daniel M. Roy, Leslie P. Kaelbling, Joshua B. Tenenbaum

Learning to Rank under Multiple Annotators / 1571
Ou Wu, Weiming Hu, Jun Gao

Similarity-Based Approach for Positive and Unlabeled Learning / 1577
Yanzhao Xiao, Bo Liu, Jie Yin, Longbing Cao, Chengqi Zhang, Zhifeng Hao

Dealing with Concept Drift and Class Imbalance in Multi-Label Stream Classification / 1583
Eleftherios Spyromitros Xiosfis, Myra Spiliopoulou, Grigoris Tsoumakas, Ioannis Vlahavas

\|_2,1\)-Norm Regularized Discriminative Feature Selection for Unsupervised Learning / 1589
Yi Yang, Heng Tao Shen, Zhigang Ma, Zi Huang, Xiaofang Zhou

Matrix Co-Factorization on Compressed Sensing / 1595
Jiho Yoo, Seungjin Choi

Diversity Regularized Machine / 1603
Yang Yu, Yu-Feng Li, Zhi-Hua Zhou

LIFT: Multi-Label Learning with Label-Specific Features / 1609
Min-Ling Zhang

Multi-Kernel Multi-Label Learning with Max-Margin Concept Network / 1615
Wei Zhang, Xiangyang Xue, Jianping Fan, Xiaoqing Huang, Bin Wu, Mingjie Liu

Pattern Field Classification with Style Normalized Transformation / 1621
Xu-Yao Zhang, Kaizhu Huang, Cheng-Lin Liu

Multidisciplinary Topics and Applications

Finding “Unexplained” Activities in Video / 1628
Massimiliano Albanese, Cristian Molinaro, Fabio Persia, Antonio Picariello, V. S. Subrahmanian

Explaining Genetic Knock-Out Effects Using Cost-Based Abduction / 1635
Emad A. M. Andrews, Anthony J. Bonner

Just an Artifact: Why Machines Are Perceived as Moral Agents / 1641
Joanna J. Bryson, Philip P. Kime

A Hierarchical Architecture for Adaptive Brain-Computer Interfacing / 1647
Mike Chung, Willy Cheung, Reinhold Scherer, Rajesh P. N. Rao

A Neural-Symbolic Cognitive Agent for Online Learning and Reasoning / 1653
A Cognitive Agent Model Displaying and Regulating Different Social Response Patterns / 1735
Jan Treur

A Cognitive Agent Model Incorporating Prior and Retrospective Ownership States for Actions / 1743
Jan Treur

Active Graph Reachability Reduction for Network Security and Software Engineering / 1750
Alice X. Zheng, John Dunagan, Ashish Kapoor

Natural Language Processing

Learning Cause Identifiers from Annotator Rationales / 1758
Muhammad Arshad Ul Abedin, Vincent Ng, Latifur Rahman Khan

Learning Bilingual Lexicons Using the Visual Similarity of Labeled Web Images / 1764
Fan Bu, Yu Hao, Xiaoyan Zhu

Semantic Relationship Discovery with Wikipedia Structure / 1770
Mengen Chen, Xiaoming Jin, Dou Shen

Short Text Classification Improved by Learning Multi-Granularity Topics / 1776
Michael Connor, Cynthia Fisher, Dan Roth

Online Latent Structure Training for Language Acquisition / 1782
Pascal Denis, Philippe Muller

Predicting Globally-Coherent Temporal Structures from Texts via Endpoint Inference and Graph Decomposition / 1788
Dan Goldwasser, Dan Roth

Learning from Natural Instructions / 1794
Dan Goldwasser, Dan Roth
Automatic Discovery of Fuzzy Synsets from Dictionary Definitions / 1801
Hugo Gonçalo Oliveira, Paulo Gomes

Unsupervised Modeling of Dialog Acts in Asynchronous Conversations / 1807
Shafiq Joty, Giuseppe Carenini, Chin-Yew Lin

Improve Tree Kernel-Based Event Pronoun Resolution with Competitive Information / 1814
Fang Kong, Guodong Zhou

Incorporating Reviewer and Product Information for Review Rating Prediction / 1820
Fangtao Li, Nathan Liu, Hongwei Jin, Kai Zhao, Qiang Yang, Xiaoyan Zhu

Semi-Supervised Learning for Imbalanced Sentiment Classification / 1826
Shoushan Li, Zhongqing Wang, Guodong Zhou, Sophia Yat Mei Lee

Collective Semantic Role Labeling for Tweets with Clustering / 1832
Xiaohua Liu, Kuan Li, Ming Zhou, Zhongyang Xiong

SMT Versus AI Redux: How Semantic Frames Evaluate MT More Accurately / 1838
Chi-ku Lo, Dekai Wu

Constraint Optimization Approach to Context Based Word Selection / 1846
Jun Matsuno, Toru Ishida

An Approach to Answer Selection in Question-Answering Based on Semantic Relations / 1852
Ana Cristina Mendes, Luísa Coheur

Learning for Deep Language Understanding / 1858
Smaranda Muresan

Improving Topic Evaluation Using Conceptual Knowledge / 1866
Claudia Cristian Musat, Julien Velcin, Stefan Trausan-Matu, Marian-Andrei Rizoiu

A Graph-Based Algorithm for Inducing Lexical Taxonomies from Scratch / 1872
Roberto Navigli, Paola Velardi, Stefano Faralli

Sample Efficient On-Line Learning of Optimal Dialogue Policies with Kalman Temporal Differences / 1878
Olivier Pietquin, Matthieu Geist, Senthilkumar Chandramohan

Ensemble-Based Coreference Resolution / 1884
Altaf Rahman, Vincent Ng

Unsupervised Lexicon Acquisition for HPSG-Based Relation Extraction / 1890
Benjamin Rozenfeld, Ronen Feldman

Interfacing Virtual Agents with Collaborative Knowledge: Open Domain Question Answering Using Wikipedia-Based Topic Models / 1896
Ulli Waltinger, Alexa Breuing, Ipke Wachsmuth

Affect Sensing in Metaphorical Phenomena and Dramatic Interaction Context / 1903
Li Zhang

Entity Linking with Effective Acronym Expansion, Instance Selection, and Topic Modeling / 1909
Wei Zhang, Yan Chuan Sim, Jian Su, Chew Lim Tan

Learning Inter-Related Statistical Query Translation Models for English-Chinese Bi-Directional CLIR / 1915
Yuejie Zhang, Lei Cen, Cheng Jin, Xiangyang Xue, Jiaping Fan

Fusion of Multiple Features and Supervised Learning for Chinese OOV Term Detection and POS Guessing / 1921
Yuejie Zhang, Lei Cen, Wei Wu, Cheng Jin, Xiangyang Xue

Planning and Scheduling

DetH*: Approximate Hierarchical Solution of Large Markov Decision Processes / 1928
Jennifer L. Barry, Leslie Pack Kaelbling, Tomás Lozano-Pérez

Planning under Partial Observability by Classical Replanning: Theory and Experiments / 1936
Blai Bonet, Hector Geffner
Risk-Sensitive Policies for Sustainable Renewable Resource Allocation / 1942
Stefano Ermon, Jon Conrad, Carla Gomes, Bart Selman

Simple and Fast Strong Cyclic Planning for Fully-Observable Nondeterministic Planning Problems / 1949
Jicheng Fu, Vincent Ng, Farokh B. Bastani, I-Ling Yen

On the Decidability of HTN Planning with Task Insertion / 1955
Thomas Geier, Pascal Bercher

Transfer Learning for Activity Recognition via Sensor Mapping / 1962
Derek Hao Hu, Qiang Yang

Point-Based Value Iteration for Constrained POMDPs / 1968
Dongho Kim, Jaesong Lee, Kee-Eung Kim, Pascal Poupart

Monitoring the Execution of Partial-Order Plans via Regression / 1975
Christian Muise, Sheila A. McIlraith, J. Christopher Beck

Computing Perfect Heuristics in Polynomial Time: On Bisimulation and
Merge-and-Shrink Abstraction in Optimal Planning / 1983
Raz Nissim, Jörg Hoffmann, Malte Helmert

Iterative Flattening Search for the Flexible Job Shop Scheduling Problem / 1991
Angelo Oddi, Riccardo Rasconi, Amedeo Cesta, Stephen F. Smith

Large Neighborhood Search and Adaptive Randomized Decompositions for Flexible Jobshop Scheduling / 1997
Dario Pacino, Pascal Van Hentenryck

Computing Infinite Plans for LTL Goals Using a Classical Planner / 2003
Fabio Patrizi, Nir Lipovetzky, Giuseppe Di Giacomo, Hector Geffner

Goal Recognition over POMDPs: Inferring the Intention of a POMDP Agent / 2009
Miquel Ramírez, Hector Geffner

Planning with SAT, Admissible Heuristics and A* / 2015
Jussi Rintanen

Replanning in Domains with Partial Information and Sensing Actions / 2021
Guy Shani, Ronen I. Brafman

Scaling Up Optimal Heuristic Search in Dec-POMDPs via Incremental Expansion / 2027
Matthijs T. J. Spaan, Frans A. Oliehoek, Christopher Amato

On the Effectiveness of CNF and DNF Representations in Contingent Planning / 2033
Son Thanh To, Enrico Pontelli, Tran Cao Son

Bounded Intention Planning / 2039
Jason Wolfe, Stuart Russell

Probabilistic Goal Markov Decision Processes / 2046
Huan Xu, Shie Mannor

Robotics and Vision

Capturing an Evader in a Polygonal Environment with Obstacles / 2054
Deepak Bhadauria, Volkan Isler

Aesthetic Guideline Driven Photography by Robots / 2060
Raghudeep Gadde, Kamalakar Karlapalem

Accommodating Human Variability in Human-Robot Teams through Theory of Mind / 2066
Laura M. Hiatt, Anthony M. Harrison, J. Gregory Trafton

Robotic Object Detection: Learning to Improve the Classifiers Using Sparse Graphs for Path Planning / 2072
Zhaoyin Jia, Ashutosh Saxena, Tsuhan Chen

Conics with a Common Axis of Symmetry: Properties and Applications to Camera Calibration / 2079
Zijian Zhao
User-Dependent Aspect Model for Collaborative Activity Recognition / 2085
Vincent W. Zheng, Qiang Yang

Uncertainty in AI

Lifted Relational Kalman Filtering / 2092
Jaesik Choi, Abner Gazman-Rivera, Eyal Amir

New Complexity Results for MAP in Bayesian Networks / 2100
Cassio P. de Campos

Inference with Multinomial Data: Why to Weaken the Prior Strength / 2107
Cassio P. de Campos, Alessio Benavoli

Motor Simulation via Coupled Internal Models Using Sequential Monte Carlo / 2113
Haris Dindo, Daniele Zambuto, Giovanni Pezzulo

Resolute Choice in Sequential Decision Problems with Multiple Priors / 2120
Hélène Fargier, Gildas Jeantet, Olivier Spanjaard

Pairwise Decomposition for Combinatorial Optimization in Graphical Models / 2126
Aurélie Favier, Simon de Girvy, Andrés Legarra, Thomas Schiex

Randomized Sensing in Adversarial Environments / 2133
Andreas Krause, Alex Roper, Daniel Golovin

Scalable Multiagent Planning Using Probabilistic Inference / 2140
Akshat Kumar, Shlomo Zilberstein, Marc Toussaint

A Trust Prediction Approach Capturing Agents’ Dynamic Behavior / 2147
Xie Liu, Anwitasaman Datta

Log-Linear Description Logics / 2153
Mathias Niepert, Jan Noessner, Heiner Stuckenschmidt

Eliciting Additive Reward Functions for Markov Decision Processes / 2159
Kevin Regan, Craig Boutilier

Robust Online Optimization of Reward-Uncertain MDPs / 2165
Kevin Regan, Craig Boutilier

Finding (α, θ)-Solutions via Sampled SCSPs / 2172
Roberto Rossi, Braham Hnich, S. Armagan Tarim, Steven Prestwich

Lifted Probabilistic Inference by First-Order Knowledge Compilation / 2178
Guy Van den Broeck, Nina Taghipour, Wannes Meert, Jesse Davis, Luc De Raedt

Learning Optimal Bayesian Networks Using A* Search / 2186
Changhe Yuan, Brandon Malone, Xiaojian Wu

Bayesian Chain Classifiers for Multidimensional Classification / 2192
Julio H. Zaragoza, L. Enrique Sucar, Eduardo F. Morales, Concha Bielza, Pedro Larrañaga

Web and Knowledge-Based Information Systems

CCR — A Content-Collaborative Reciprocal Recommender for Online Dating / 2199
Joshua Akehurst, Irena Koprinska, Kalina Yacef, Luiz Pizzato, Judy Kay, Tomek Rej

Relation Adaptation: Learning to Extract Novel Relations with Minimum Supervision / 2205
Datushka Bollegala, Yutaka Matsuo, Mitsuhiro Ishizuka

Leveraging Unlabeled Data to Scale Blocking for Record Linkage / 2211
Yunbo Cao, Zhiyuan Chen, Jianmin Zhu, Pei Yue, Chin-Yew Lin, Yong Yu

A Convex Formulation of Modularity Maximization for Community Detection / 2218
Emprise Y. K. Chan, Dit-Yan Yeung

What to Ask to an Incomplete Semantic Web Reasoner? / 2226
Bernardo Cuenca Grau, Giorgos Stoilos
The Modular Structure of an Ontology: Atomic Decomposition / 2232
Chiara Del Vescovo, Bijan Parsia, Uli Sattler, Thomas Schneider

Fast Algorithm for Affinity Propagation / 2238
Yasuhiro Fujiwara, Go Irie, Tomoe Kitahara

Mining the Web for the “Voice of the Herd” to Track Stock Market Bubbles / 2244
Aaron Gerow, Mark T. Keane

Relevance Feedback between Web Search and the Semantic Web / 2250
Harry Halpin, Victor Lavrenko

Finding the Hidden Gems: Recommending Untagged Music / 2256
Ben Horsburgh, Susan Craig, Stewart Massie, Robin Boswell

Fashion Coordinates Recommender System Using Photographs from Fashion Magazines / 2262
Tomoharu Iwata, Shinji Wanatabe, Hiroshi Sawada

Mining Longitudinal Network for Predicting Company Value / 2268
Yingzi Jin, Ching-Yung Lin, Yutaka Matsuo, Mitsuru Ishizuka

Context Sensitive Topic Models for Author Influence in Document Networks / 2274
Saurabh Kataria, Prasenjit Mitra, Cornelia Caragea, C. Lee Giles

Multi-Perspective Linking of News Articles within a Repository / 2281
Arpit Khurdiya, Lipika Dey, Nidhi Raj, Sk. Mirajul Haque

Social Abstract Argumentation / 2287
João Leite, João Martins

Cross-Domain Collaborative Filtering over Time / 2293
Bin Li, Xingquan Zhu, Ruijiang Li, Chengqi Zhang, Xiangyang Xue, Xindong Wu

Minimally Complete Recommendations / 2299
David McSherry

User Similarity from Linked Taxonomies: Subjective Assessments of Items / 2305
Makoto Nakatsuji, Yasuhiro Fujiwara, Toshio Uchiyama, Ko Fujimura

LIMES — A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data / 2312
Axel-Cyrille Ngonga Ngomo, Sören Auer

Transfer Learning to Predict Missing Ratings via Heterogeneous User Feedbacks / 2318
Weike Pan, Nathan N. Liu, Evan W. Xiang, Qiang Yang

Making Better Informed Trust Decisions with Generalized Fact-Finding / 2324
Jeff Pasternack, Dan Roth

Short Text Conceptualization Using a Probabilistic Knowledgebase / 2330
Yangqiu Song, Haixun Wang, Zhongyuan Wang, Hongsong Li, Weizhu Chen

A Wikipedia Based Semantic Graph Model for Topic Tracking in Blogosphere / 2337
Jintao Tang, Ting Wang, Qin Lu, Ji Wang, Wenjie Li

Matching Large Ontologies Based on Reduction Anchors / 2343
Peng Wang, Yameng Zhou, Baowen Xu

Line Orthogonality in Adjacency Eigenspace with Application to Community Partition / 2349
Leting Wu, Xiaowei Ying, Xintao Wu, Zhi-Hua Zhou

Source-Selection-Free Transfer Learning / 2355
Evan Wei Xiang, Simo Jialin Pan, Weike Pan, Jian Su, Qiang Yang

Predicting Epidemic Tendency through Search Behavior Analysis / 2361
Danqing Xu, Yiqun Liu, Min Zhang, Shaoping Ma, Anqi Cui, Liyun Ru

Mining User Dwell Time for Personalized Web Search Re-Ranking / 2367
Songhua Xu, Hao Jiang, Francis Chi-Moon Lau

Efficient Searching Top-k Semantic Similar Words / 2373
Zhenglu Yang, Masaru Kitsuregawa
Special Track on Integrated and Embedded Artificial Intelligence

Integrating Task Planning and Interactive Learning for Robots to Work in Human Environments / 2386
Alejandro Agostini, Carme Torras, Florentin Wörgötter

Plan Recognition in Virtual Laboratories / 2392
Ofra Amir, Yaakov (Kobi) Gal

A Comprehensive Approach to On-Board Autonomy Verification and Validation / 2398
Marco Bozzano, Alessandro Cimatti, Marco Roveri, Andrei Tchaliev

Non-Linear Monte-Carlo Search in Civilization II / 2404
S. R. K Branavan, David Silver, Regina Barzilay

Buried Utility Pipeline Mapping Based on Multiple Spatial Data Sources:
A Bayesian Data Fusion Approach / 2411
Huanhuan Chen, Anthony G. Cohn

Enhancing Search Results with Semantic Annotation Using Augmented Browsing / 2418
Hong-jie Dai, Wei-Chi Tsai, Richard Tzong-Han Tsai, Wen-Lian Hsu

Simulation-Based Data Mining Solution to the Structure of Water Surrounding Proteins / 2424
Hieu Chi Dam, Tu Bao Ho, Ayumu Sugiyama

A Natural Language Question Answering System as a Participant in Human Q&A Portals / 2430
Tiansi Dong, Ulrich Furbach, Ingo Glöckner, Björn Pelzer

Sketch Recognition Algorithms for Comparing Complex and Unpredictable Shapes / 2436
Martin Field, Stephanie Valentine, Julie Linsey, Tracy Hammond

Exploiting Probabilistic Knowledge under Uncertain Sensing for Efficient Robot Behaviour / 2442
Marc Hanheide, Charles Gretton, R. Dearden, Nick Hawes, Jeremy Wyatt, Andrzej Pronobis,
Alper Aydemir, Moritz Gobelbecker, Hendrik Zender

Integrated Learning for Goal-Driven Autonomy / 2450
Ulit Jaidee, Héctor Muñoz-Avila, David W. Aha

Learning Compact Visual Descriptor for Low Bit Rate Mobile Landmark Search / 2456
Rongrong Ji, Ling-Yu Duan, Jie Chen, Hongxun Yao, Tiejun Huang, Wen Gao

A New Search Engine Integrating Hierarchical Browsing and Keyword Search / 2464
Da Kuang, Xiao Li, Charles X. Ling

Resource-Bounded Crowd-Sourcing of Commonsense Knowledge / 2470
Yen-Ling Kuo, Jane Yung-jen Hsu

A Real-Time Opponent Modeling System for Rush Football / 2476
Kennard Laviers, Gita Sukthankar

Coordinating Logistics Operations with Privacy Guarantees / 2482
Thomas Léauté, Boi Faltings

Learning to Identify Review Spam / 2488
Fangtao Li, Minlie Huang, Yi Yang, Xiaoyan Zhu

A System for Providing Differentiated QoS in Retail Banking / 2494
Sameep Mehta, Girish Chaffie, Gyanu Parjia, Vikas Kedia

Learning 3D Geological Structure from Drill-Rig Sensors for Automated Mining / 2500
Sildomar T. Monteiro, Joop van de Ven, Fabio Ramos, Peter Hatherly

Interest Prediction on Multinomial, Time-Evolving Social Graph / 2507
Nozomi Nori, Damushka Bollegala, Mitsuru Ishizuka

An Agent Architecture for Prognostic Reasoning Assistance / 2513
Jean Oh, Felipe Meneguzzi, Katia Sycara, Timothy J. Norman
Extending Computer Assisted Assessment Systems with Natural Language Processing, User Modeling, and Recommendations Based on Human Computer Interaction and Data Mining / 2519
Ismael Pascual-Nieto, Olga C. Santos, Diana Perez-Marín, Jesus G. Boticario

Integrating Learning into a BDI Agent for Environments with Changing Dynamics / 2525
Dhirendra Singh, Sebastian Sardina, Lin Padgham, Geoff James

Embedding System Dynamics in Agent Based Models for Complex Adaptive Systems / 2531
Maarika Teose, Kiyam Ahmadizadeh, Eoin O'Mahony, Rebecca L. Smith, Zhao Lu, Stephen P. Elsner, Carla Gomes, Yrjo Grohn

Kinship Verification through Transfer Learning / 2539
Siyu Xia, Ming Shao, Yun Fu

Cross-People Mobile-Phone Based Activity Recognition / 2545
Zhongtang Zhao, Yiqiang Chen, Junfa Liu, Zhiqi Shen, Mingjie Liu

CHIME: An Efficient Error-Tolerant Chinese Pinyin Input Method / 2551
Yabin Zheng, Chen Li, Maosong Sun

Best Paper Track

A Geometric View of Conjugate Priors / 2558
Arvind Agarwal, Hal Daumé III

Human-Guided Machine Learning for Fast and Accurate Network Alarm Triage / 2564
Saleema Amershi, Bongshin Lee, Ashish Kapoor, Ratul Mahajan, Blaine Christian

Lower Bounds for Width-Restricted Clause Learning on Formulas of Small Width / 2570
Eli Ben-Sasson, Jan Johannsen

Community Detection in Social Networks through Community Formation Games / 2576
Wei Chen, Zhenming Liu, Xiaorui Sun, Yajun Wang

An Algorithm for Adapting Cases Represented in ALC / 2582
Julien Cojan, Jean Lieber

Exploring Protein Fragment Assembly Using CLP / 2590
Alessandro Dal Palù, Agostino Dovier, Federico Fogolari, Enrico Pontelli

Translation-Based Constraint Answer Set Solving / 2596
Christian Drescher, Toby Walsh

Incentive Engineering for Boolean Games / 2602
Ulle Endriss, Sarit Kraus, Jérôme Lang, Michael Wooldridge

A Flat Histogram Method for Computing the Density of States of Combinatorial Problems / 2608
Stefano Ermon, Carla Gomes, Bart Selman

picoTrans: Using Pictures as Input for Machine Translation on Mobile Devices / 2614
Andrew Finch, Wei Song, Kamaka Tanaka-Ishii, Eiichiro Sumita

Automatic Construction of Efficient Multiple Battery Usage Policies / 2620
Maria Fox, Derek Long, Daniele Magazzeni

Finite Model Computation via Answer Set Programming / 2626
Martin Gebser, Orkunt Sabuncu, Torsten Schaub

Measuring the Good and the Bad in Inconsistent Information / 2632
John Grant, Anthony Hunter

A Correctness Result for Reasoning about One-Dimensional Planning Problems / 2638
Yuxiao Hu, Hector J. Levesque

A Transitivity Aware Matrix Factorization Model for Recommendation in Social Networks / 2644
Mohsen Jamali, Martin Ester

Reinforcement Learning to Adjust Robot Movements to New Situations / 2650
Jens Kober, Erhan Oztop, Jan Peters

xxiii
Decision Support through Argumentation-Based Practical Reasoning / 2786
  Federico Cerutti

Behaviour Recognition in Smart Homes / 2788
  Sook-Ling Chua, Stephen Marsland, Hans W. Guesgen

Statement of Thesis Research: Multi-Robot Sampling Strategies for Large-Scale Oceanographic Experiments / 2790
  Jnaneshwar Das

Control of Robotic Systems for Safe Interaction with Human Operators / 2792
  Hao Ding

Combining Machine Learning and Optimization Techniques to Determine 3-D Structures of Polypeptides / 2794
  Márcio Dorn, Luciana S. Buriol, Luis C. Lamb

An Agent-Oriented Software Engineering Methodology to Develop Adaptive Virtual Organizations / 2796
  Sergio Esparcia, Estefania Argente, Vicente Botti

Towards Social Problem-Solving with Human Subjects / 2798
  Daniel S. Farenzena, Ricardo M. Araujo, Luis C. Lamb

Towards Spatial Methods for Socially Assistive Robotics: Validation with Children with Autism Spectrum Disorders / 2800
  David Feil-Seifer

Regret Minimization in Multiplayer Extensive Games / 2802
  Richard Gibson, Duane Szafron

Combinatorial Aggregation / 2804
  Umberto Grandi

Combining Spatial and Temporal Aspects of Prediction Problems to Improve Prediction Performance / 2806
  William Groves

A Decision-Theoretic Academic Advisor: Extended Abstract / 2808
  Joshua T. Guerin

Belief Revision on Computation Tree Logic / 2810
  Paulo T. Guerra, Renata Wassermann

Distributed Constraint Optimization Problems Related with Soft Arc Consistency / 2812
  Patricia Gutierrez, Pedro Meseguer

A Trust and Reputation Model for Supply Chain Management / 2814
  Yasaman Haghpahnah

Graph Pruning and Symmetry Breaking on Grid Maps / 2816
  Daniel Harabor

Towards Scalable MDP Algorithms / 2818
  Andrey Kolobov, Mausam, Daniel S. Weld

Talking about Trust in Heterogeneous Multi-Agent Systems / 2820
  Andrew Koster, Jordi Sabater-Mir, Marco Schorlemmer

An Analysis of Multiobjective Search Algorithms and Heuristics / 2822
  Enrique Machuca

On Temporal Regulations and Commitment Protocols / 2824
  Elisa Marengo, Matteo Baldoni, Cristina Baroglio

Contributions to Personalizable Knowledge Integration / 2826
  Maria Vanina Martinez

Decision Making under Uncertainty: Social Choice and Manipulation / 2828
  Nicholas Mattei

RDFKB: A Semantic Web Knowledge Base / 2830
  James P. McGlothlin, Latifur Khan, Bhavani Thuraisingham
Recommender Systems from “Words of Few Mouths”

Richong Zhang, Thomas Tran, and Yongyi Mao
University of Ottawa
Ottawa, Canada
rzhan025, ttran, yymao@site.uottawa.ca

Abstract

This paper identifies a widely existing phenomenon in web data, which we call the “words of few mouths” phenomenon. This phenomenon, in the context of online reviews, refers to the case that a large fraction of the reviews are each voted only by very few users. We discuss the challenges of “words of few mouths” in the development of recommender systems based on users’ opinions and advocate probabilistic methodologies to handle such challenges. We develop a probabilistic model and correspondingly a logistic regression based learning algorithm for review helpfulness prediction. Our experimental results indicate that the proposed model outperforms the current state-of-the-art algorithms not only in the presence of the “words of few mouths” phenomenon, but also in the absence of such phenomena.

1 Introduction

“Electronic word of mouths”, or EWOM, on the Internet, may widely refer to information, opinions and user inputs of various kinds, which are provided independently by the Internet users. In general, the problem of developing a recommender system from EWOM may be abstracted in terms of a collection of “widgets”, a collection of users, and each user’s opinion on a subset of the “widgets”. Here, a “widget” can refer to a movie, a video clip, a product, a blog, an article, etc; the opinion of a user on a widget could be in text form (such as a review article), numerical form (such as a product rating), categorical form (such as tags), binary form (such as LIKE/DISLIKE) etc. The objectives of developing the recommender system may include deciding which widgets are to be recommended to a particular user or to a typical user, deciding what level of recommendation should be given, etc.

A particular example of a recommender system which we will consider throughout the paper is a “review helpfulness predictor”, where each “widget” is a review of a product, and the user opinions are in binary forms, namely, that each user may vote the review HELPFUL or UNHELPFUL. We will consider the case where there is no information about who votes on which review; that is, for each review, in addition to its text content, the only information available is the number of positive (i.e., HELPFUL) votes and the number of negative (i.e., UNHELPFUL) votes. The functionality of a review helpfulness predictor is to predict the “helpfulness” of a new review based on the existing reviews and the existing votes on those reviews.

It has been recognized that retrieving information from EWOM is often a challenging task. In this paper, we bring to awareness a phenomenon which we call “words of few mouths” (WOFM) which widely exists in EWOM and which amplifies the challenge for developing recommender systems. Specifically the WOFM phenomenon refers to the case where there is a large fraction of “widgets” each only having received opinions from very few users.

The challenges brought by WOFM in the development of recommender system manifest itself as further degraded reliability of user opinions. Using the review helpfulness prediction problem as an example, when each review has been voted by a large number of users, the fraction of positive votes is a natural indicator of the “helpfulness” of the review, and one can use such a metric to train a learning machine and infer the dependency of positive vote fractions on review documents (see, e.g., [Kim et al., 2006; Weimer, 2007; Liu et al., 2008]). However, in the presence of WOFM, the positive vote fraction is a poor indicator of review helpfulness and the performance of the predictors trained this way necessarily degrade.

In general, the negative impact of WOFM can have varying severity, which depends on whether there is additional information available, the size of the data set, the heterogeneity of the “widgets” and that of “users”, etc. A partial cure of WOFM is to remove the “unpopular widgets” (i.e. those receiving few user opinions) from the data set when developing a recommender system. Such an approach is however often unaffordable, particularly when the problem space is large and the data set is relatively small.

In this paper, we advocate probabilistic approaches to developing recommender system from WOFM, where we use helpfulness prediction as an example. In our approach, instead of considering user opinions on “unpopular” widgets unreliable and throwing them away, we treat user opinions in a probabilistic manner, naturally taking into account the uncertainty arising from WOFM. Specific to the review helpfulness prediction problem, we develop a logistic regression...
based algorithm and demonstrate that it significantly outperforms prior arts in this setting. The contributions of this paper are three-fold.

1. We identify and bring to awareness the WOFM phenomenon, a problem widely existing in the development of recommender systems.

2. We propose the use of probabilistic methodologies to tackle such problems.

3. We present an algorithm for a concrete example application and demonstrate its superior performance over existing algorithms. Although our algorithm is based on the logistic regression model for classification, the application we study in this paper does not belong to classification. In particular, in a classification problem, each widget (feature vector) is associated with one class label unambiguously, whereas for the helpfulness prediction problem, each widget is associated with a number of possibly contradicting “class labels” and re-deriving the update equations for the model is necessary. We note that in this paper, we have been brief on many specifics of the review helpfulness prediction problem, for comprehensive details of which, the reader is referred to [Zhang et al., 2011].

We note that the notion of WOFM is closely related to the “Long Tail” phenomenon previously studied in the literature (see, e.g., [Park and Tuzhilin, 2008] and references therein). In the literature, the Long Tail phenomenon refers to the scenarios where a large fraction of sales (or user feedbacks, in the context of this paper) result from the “unpopular” widgets. However, it is worth noting that the notion of “unpopular” in the Long Tail phenomenon may not be consistent with that in WOFM. In particular, the popularity measure of a widget in the Long Tail phenomenon is usually relative, namely, via comparing with other widgets; an unpopular widget in that setting may still be associated with a significant amount of user feedback and presents little difficulty for developing predictors, whereby disqualifying themselves as unpopular widgets in the context of WOFM. The literature of recommender systems dealing with Long Tails are primarily concerned with developing techniques to handle the non-uniformity of feedback data (e.g., [Park and Tuzhilin, 2008] separates “Tail widgets” and “Head widgets” and treats them differently).

We also like to stress that although the presented logistic regression algorithm in this paper demonstrates significant advantages over other algorithms, we have no intention to mean that this is the only algorithm fitting the probabilistic methodology we advocate. Indeed, in [Zhang and Tran, 2011], we have presented EM-based probabilistic algorithm for review helpfulness prediction. However the performance of the EM-based algorithm is in fact inferior to the algorithm in this paper when applied to this setting (data not shown).

2 Probabilistic Approach to Developing Recommender Systems

Overall, developing a recommender system can often be casted as a machine learning problem [Adomavicius and Tuzhilin, 2005], and various standard machine-learning toolkits may be applicable for this purpose. Here we advocate a probabilistic modeling approach, particularly in the case of “words of few mouths”. Methodologically, we first create a probabilistic model, or a family of hypotheses, to characterize the statistical dependency between the “widgets”, users, and their opinions. Such a model is typically characterized by a set of parameters, and some of these parameters or their derived quantities are made to reflect the objective of the recommender system. We then select a parameter setting of the model, or a single hypothesis, that “best” explains the available data set in some well-principled sense of optimality. To be more concrete, the remainder of this paper focuses on developing algorithmic engines for review helpfulness predictor.

2.1 Probabilistic Formulation of Helpfulness Prediction Problem

To formulate the review helpfulness prediction problem, we use $d_i := \{d_i : i \in I\}$ to denote the set of all available reviews, where set $I$ is a finite indexing set and each $d_i, i \in I$ is a review document. Similarly, we use $v_J := \{v_J : j \in J\}$ to denote the set of all available votes, where set $J$ is another finite indexing set and each $v_j, j \in J$, is a $\{0,1\}$-valued variable, or a vote, with 1 corresponding to HELPFUL and 0 corresponding to UNHELPFUL. The association between votes and reviews effectively induces a partition of index set $J$ into disjoint subsets $\{J(i) : i \in I\}$, where for each $i$, $J(i)$ indexes the set of all votes concerning review $d_i$. In particular, each set $J(i)$ naturally splits into two disjoint subsets $J^+(i)$ and $J^-(i)$, indexing respectively the positive votes on review $i$ and the negative votes on review $i$.

The helpfulness prediction problem can then be rephrased as determining how helpful an arbitrary review $d$, not necessarily in $d_i$, would be, given $d_i$, $v_j$ and the partition $\{J(i) : i \in I\}$.

To arrive at a mathematical formulation of the problem, what remains to characterize is the meaning of “helpfulness”. Conventional approaches (see, for example, [Kim et al., 2006], [Weimer, 2007], [Liu et al., 2008], etc.) characterize the helpfulness of review $i$ as the fraction of votes indexed by $J(i)$ that are equal to 1. This measure, which we call positive vote fraction of review $i$ and denote it by $\alpha_i$, may be formally defined follows.

$$\alpha_i = \frac{|J^+(i)|}{|J(i)|},$$ (1)

where $|\cdot|$ denotes the cardinality of a set.

Built on this measure of helpfulness, conventional approaches, including for example, SVR and ANN, start with extracting the positive vote fraction $\alpha_i$ for each review in $d_i$ and attempts to infer the dependency of positive vote fraction $\alpha$ on a generic document $d$. These approaches are deterministic in nature, since they all assume a functional dependency of $\alpha$ on $d$. The methodology of these approaches boils down to first prescribing a family of candidate functions describing this dependency and then, via training using data $\{d_i, v_j, \{J(i) : i \in I\}\}$, selecting one of the functions that best fit the data.
Despite promising results reported for several cases, these approaches are not suitable for the case of WOFM since the positive vote fraction, as an indicator of helpfulness, suffers greatly from statistical irregularity.

We now present a probabilistic approach to the helpfulness prediction problem. Let $\mathcal{D}$ be the space of all reviews and $\mathcal{R}$ be the space of all functions mapping $\mathcal{D}$ to $\{0, 1\}$. Here each function $r \in \mathcal{R}$ is essentially a “voting function” characterizing a way to vote any document in $\mathcal{D}$. We consider that our data $(d_i, v_j, \{J(i) : i \in I\})$ is the result of random sampling of the cartesion product space $\mathcal{D} \times \mathcal{R}$ according to the following procedure:

1. There is an unknown distribution $p_{\mathcal{D}}$ on $\mathcal{D}$; applying i.i.d. sampling of $\mathcal{D}$ under $p_{\mathcal{D}}$ results in $d_i$.
2. For each $d \in \mathcal{D}$, there is an unknown conditional distribution $p_{\mathcal{R}|d}$ on $\mathcal{R}$. For each $d_i$, $i \in I$, applying i.i.d. sampling of $\mathcal{R}$ under $p_{\mathcal{R}|d}$ and let the drawn rating functions act on $d_i$ result in the set of votes $v_{J(i)}$ on review $d_i$.

Here, and as well as will be followed throughout the paper, we have adopted the notations that random variables (and more generally random functions) are denoted by capitalized bold-font letters, a value that a random variable may take is denoted by the corresponding lower-cased letter, and any probability distribution is denoted by $p$ with an appropriate subscript to indicate the concerned random variable(s). When it is clear from the context, we may drop the subscripts of $p$ to lighten the notations.

Under the above generative interpretation of data $(d_i, v_j, \{J(i) : i \in I\})$, we characterize the helpfulness of a review document $d \in \mathcal{D}$ as the probability that a random voting function $R$ drawn from distribution $p_{\mathcal{R}|d}$ results in $R(d) = 1$ or the probability that a random reader will vote review document $d$ helpf ul. Noting that the joint distribution $p_{\mathcal{D}\mathcal{R}}$ on the cartesian product space $\mathcal{D} \times \mathcal{R}$ induces by the above procedure also induces a conditional distribution $p_{\mathcal{V}|\mathcal{D}}$ on $\{0, 1\} \times \mathcal{D}$, where $V$ takes values in $\{0, 1\}$ and $\mathcal{D}$ takes values in $\mathcal{D}$. This distribution is essentially the distribution of a random vote conditioned on a random document $D$, and the evaluation of this distribution at $V = 1$ and $D = d$, namely, $p_{\mathcal{V}|\mathcal{D}}(1|d)$, equals the probability that $R(d) = 1$, or the helpfulness of document $d$.

This allows a probabilistic formulation of helpfulness prediction problem: Given data $(d_i, v_j, \{J(i) : i \in I\})$ generated from the above procedure, determine the distribution $p_{\mathcal{V}|\mathcal{D}}$.

Although one may consider various options to adapt a classification methodology to solving the formulated problem, here we advocate a model-based principled approach. In this approach, we first create a family $\Theta_{\mathcal{V}|\mathcal{D}}$ of candidate conditional distributions to model $p_{\mathcal{V}|\mathcal{D}}$, and then choose one of the candidates under which the (log)likelihood of observed data $(d_i, v_j, \{J(i) : i \in I\})$ is maximized. That is, after prescribing the family $\Theta_{\mathcal{V}|\mathcal{D}}$, we solve for

$$p_{\mathcal{V}|\mathcal{D}}^* = \arg\max_{p_{\mathcal{V}|\mathcal{D}} \in \Theta_{\mathcal{V}|\mathcal{D}}} \log p_{\mathcal{V}|\mathcal{D}}(v_j|d_i)$$

Under the assumption specified in the data generation process in which both documents and voting functions are drawn i.i.d., it follows that

$$p_{\mathcal{V}|\mathcal{D}}^* = \arg\max_{p_{\mathcal{V}|\mathcal{D}} \in \Theta_{\mathcal{V}|\mathcal{D}}} \sum_{i \in I} \sum_{j \in J(i)} \log p_{\mathcal{V}|\mathcal{D}}(v_j|d_i)$$

As is common in many machine-learning problems, the huge dimensionality of space $\mathcal{D}$ makes solving problem (3) infeasible. A wide-used technique to reduce the dimensionality is via mapping each document to a low dimensional feature vector. Formally, let $F$ be the image of a given choice of feature generating function $s : \mathcal{D} \rightarrow \mathcal{F}$. That is, $F$ is the space of all feature vectors. The joint distribution $p_{\mathcal{V}|F}$ induces a joint distribution $p_{\mathcal{V}|F}$ on the cartesian product $\{0, 1\} \times \mathcal{F}$, which further induces a conditional distribution $p_{\mathcal{V}|F}$ of a random vote $V$ given a random feature $F$. The objective of helpfulness prediction as specified in (3) is then modified to finding

$$p_{\mathcal{V}|F}^* = \arg\max_{p_{\mathcal{V}|F} \in \Theta_{\mathcal{V}|F}} \sum_{i \in I} \sum_{j \in J(i)} \log p_{\mathcal{V}|F}(v_j|f_i),$$

where $\Theta_{\mathcal{V}|F}$ is a family of candidate distributions $p_{\mathcal{V}|F}$ which we create to model the unknown dependency of $V$ on $F$.

At this end, we have not only arrived at a sensible and well-defined notion of helpfulness, we also have translated the problem of helpfulness prediction to an optimization problem. In the remainder of this paper, we present a prediction algorithm similar to the logistic regression algorithm [Hosmer and Lemeshow, 2000] developed in classification literature.

### 2.2 Logistic Regression for Helpfulness Prediction

Central to solving the optimization problem specified in (4) is the specification of model $\Theta_{\mathcal{V}|F}$. A good choice of $\Theta_{\mathcal{V}|F}$ will not only serve to reduce the problem dimensionality yet containing good candidate solutions, but also facilitate the development of principled optimization algorithms. Logistic regression model is one of such models. Using logistic regression, we model the probabilistic dependency of $V$ on $F$ using the logistic function. More precisely, we define

$$p_{\mathcal{V}|F}(1|f) = \mu(\lambda),$$

where $\mu(\lambda)$ is the logistic function defined by

$$\mu(\lambda) := \frac{1}{1 + e^{-\lambda}},$$

and $\lambda := \theta^T f$ for some vector $\theta$ having the same dimension as feature vector $f$. We note that since $p_{\mathcal{V}|F}(1|f) + p_{\mathcal{V}|F}(0|f) = 1$, Equation (5) completely defines model $\Theta_{\mathcal{V}|F}$, namely,

$$\Theta_{\mathcal{V}|F} := \{p_{\mathcal{V}|F} satisfying p_{\mathcal{V}|F}(1|f) = \frac{1}{1 + e^{-\sigma^T f}} : \theta \in \mathbb{R}^m\},$$

where we have assumed that each feature vector is $m$-dimensional.

We note that this model is valid since logistic function has range $(0, 1)$. In addition, it is known in the context of binary classification that as long as the conditional distribution
of feature given class label is from the exponential family, the conditional distribution of class label given feature is a logistic function. This fact together with the richness of the exponential family makes our choice of $\Theta_{\mathcal{V}, \mathcal{F}}$ a robust and general model, rather insensitive to the exact form of the distribution governing the dependency between document feature and vote.

Now using model $\Theta_{\mathcal{V}, \mathcal{F}}$ defined in Equation (6), the optimization problem of Equation (4) reduces to solving
\[
\hat{\Theta} = \arg\max_{\Theta \in \mathbb{R}^m} \sum_{i \in I} \sum_{j \in J(i)} [v_j \log \mu(f_i) + (1 - v_j) \log (1 - \mu(f_i))],
\]
where we have, by a slight abuse of notation, write $\mu$ as a function of $f$, namely, $\mu(f)$ denotes $\mu(\lambda(f))$.

Denote the objective function in this optimization problem by $l(\hat{\Theta})$, we have
\[
\frac{dl}{d\theta} = \sum_{i \in I} \sum_{j \in J(i)} f_i(v_j - \mu(f_i))
\]
This allows a gradient ascent algorithm to optimize the objective function, in which value of the objective function can be step-by-step increased via updating the configuration of $\theta$

\[
\theta^{t+1} := \theta^t + \rho \sum_{i \in I} \sum_{j \in J(i)} f_i(v_j - \mu(f_i)).
\]

where $\rho$ is a choice of step size.

3 Experimental Evaluation

To demonstrate the effectiveness of the proposed approach, we experimentally evaluate our logistic regression model (LRM) and compare it with two most well-known machine learning methods, Support Vector Regression (SVR) [Burges, 1998], and Artificial Neural Network (ANN) [Bishop, 1996], in review helpfulness prediction. This section presents our method of evaluation, experimental setups and results of comparison.

3.1 Method of Evaluation

A difficulty associated with “words of few mouths” in evaluating the performances of algorithms is the lack of benchmarks for “unpopular widgets”. In the context of helpfulness prediction, this difficulty translates to the question what to use as the helpfulness value of a review that is only voted by a few users. To get around this difficulty, for a given real data set that will be used to evaluate the algorithms of interest, we remove the reviews that are voted by fewer than $M$ users. We will refer to the resulting data set as the “many-vote” data set. It is apparent that when $M$ is reasonably large, we may use the positive vote fraction to benchmark the helpfulness of the reviews in the many-vote data set. In this work, we choose $M = 10$.

We construct a “few-vote” data set from the many-vote data set by randomly selecting $k$ user’s votes for each review and removing all other votes. Given the value $k$, a few-vote data set may also be referred to as a $k$-vote data set. Noting that the few-vote data set and the many-vote data set contain the same collection of reviews and that their difference is that in the many-vote data set, each review is voted by no fewer than $M$ users and in the few-vote data set, each review is voted by exactly $k$ users. In our study, we focus on the case of $k = 5$.

We then partition the set of reviews into the set $\mathcal{N}$ of training reviews and the set $\mathcal{T}$ of testing reviews, where 2/3 of the reviews are training reviews and 1/3 are testing reviews. The partitioning is performed repeatedly using random subsampling and total of 50 random partitions $(\mathcal{N}, \mathcal{T})$’s are generated.

In this setting, two types are experiments are performed. Few-Vote Experiment For each real data set and each partition $(\mathcal{N}, \mathcal{T})$ of the reviews, we simultaneously train the three algorithms using the training reviews $\mathcal{N}$ where the user votes on these reviews are taken from the few-vote data set. The trained algorithms are then simultaneously applied to the testing reviews.

Many-Vote Experiment A many-vote experiment is identical to the few-vote experiment except that the user votes on the training reviews are taken from the many-vote data set.

Helpfulness rank correlation is used as the metric in our study to evaluate the performance of compared algorithms. It is essentially the Spearman’s rank correlation coefficient $\eta$ between the helpfulness ranks of the testing reviews predicted by an algorithm and that according to the corresponding positive vote fractions.

\[
\eta = 1 - \frac{6 \sum_{j \in T} (x_j - y_j)^2}{|T|(|T|^2 - 1)},
\]

where $x_j$ is the rank of review $j$ according to helpfulness predicted by an algorithm and $y_j$ is the rank of review $j$ according to the positive vote fraction of review $j$ obtained from the many-vote data set. The average $\bar{\eta}$ of helpfulness rank correlations may be computed across all random partitions to obtain the overall performance of an algorithm. In addition, the correlation values $\eta$’s can be used in a $t$-test to determine whether an algorithm performs significantly differently from another algorithm.

3.2 Experimental Setup

As there are no standard customer review corpus available, we utilize the web services provided by Amazon.com to crawl the web site and obtain two data sets of review documents and vote information: HDTV data set and digital camera data set. The HDTV many-vote data set contains 14,397 votes and 583 reviews and the camera many-vote data set contains 13,826 votes and 906 reviews.

Since the objective of this work is not to develop a sophisticated language model but rather to study the WOFM problem, we use the “bag of words” language model to represent each review document. For each partition $(\mathcal{N}, \mathcal{T})$, prior to the training of the three algorithms, dimensionality reduction is performed using the principal component analysis (PCA). We select the top 200 principal components in PCA, which accounts for 70% of the total variance. We implement a three-layer back-propagation (BP) ANN. The number of neurons in the hidden layer is chosen to be 10. Each node utilizes
sigmoid transfer function. The training of the ANN is terminated after 1000 training iterations or when the error term is less than 0.001. We also implement a SVR algorithm using the LibSVM [Chang and Lin, 2001] toolkit. The parameters of the SVR, C and g, are chosen by applying a 10-fold cross validation and a grid search on a logarithmic scale. The learning targets for both ANN and SVR are chosen to be the positive vote fractions of the training reviews.

### 3.3 Experimental Results

Figure 1 shows a set of scatter plots that compare the helpfulness rank correlation between LRM, SVR, and ANN for HDTV and camera data in few-vote experiments. Each point in any plot corresponds to one partition \((N, T)\). It is visually apparent that the points in each of these plots primarily scatter above the \(y = x\) diagonal line, suggesting that there is a significant performance advantage of LRM over SVR and ANN. This can also be verified by the average of helpfulness rank correlations, \(\bar{\eta}\), of the compared algorithms and the \(p\)-values of the \(t\)-tests (all smaller than 0.005).

Although the proposed LRM algorithm is motivated by WOFM, nothing in fact would prevent its use as a general helpfulness prediction algorithm even in absence of such a phenomenon. To demonstrate this, we also performed many-vote experiments for the same set of random partitions and in fact similar performance advantage of LRM as those shown in Figures 1 are obtained (data not shown). It is of interest to compile the results obtained in the two set of experiments and investigate how differently an algorithm performs in few-vote experiments and in many-vote experiments. Figure 2 compares the performances of each algorithm between 5-vote data and many-vote data. It can be seen from (a) and (b) that the scattering of the points in LRM algorithm is tightly around the diagonal line. This indicates that the algorithm is quite robust against WOFM. In particular, the performance of the algorithm under WOFM and that in absence of WOFM are quite close, and this similarity in performance is not only in the average sense, but also in the “almost-everywhere” sense. In contrast, as shown in (c) and (d), the performances of SVR and ANN are quite sensitive to WOFM. Under WOFM scenarios, not only the average performance degrades, the performances of SVR and ANN also severely suffer from large stochastic variations. This is expected, since using positive vote fractions as the training target necessarily suffer from significant statistical irregularity induced by WOFM. Finally, we would like to remark that the proposed LRM algorithm is the most computationally efficient among the three algorithms.

### 4 Concluding Remarks

In this paper, we have introduced a widely existing phenomenon, “words of few mouths”, in the context of recommender system based on user opinions. This phenomenon presents additional challenges for developing machine-learning algorithms in recommender systems, since the very few users’ opinions, if treated improperly, are either unutilized, leading to lack of resources for learning, or becoming an additional source of “noise” in the training of algorithms.

The main philosophy advocated in this paper is the use
of probabilistic approaches to tackle such challenges, where WOFM is treated as sparse sampling of some distribution. Via developing a logistic regression based learning algorithm for review helpfulness prediction and comparing it rigorously against other machine-learning algorithms, we demonstrate the power of probabilistic methods in the presence of WOFM.

Although this paper primarily focuses on helpfulness prediction, the general methodology presented is applicable to the algorithmic engines of other recommender systems from EWOM. Our results suggest that probabilistic modeling based inference and learning algorithms are particularly suitable for handling uncertainty, errors and missing information in the data set.

References


